位置:成果数据库 > 期刊 > 期刊详情页
基于L2,p矩阵范数稀疏表示的图像分类方法
  • ISSN号:1005-9830
  • 期刊名称:《南京理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP331.1[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京理工大学计算机科学与工程学院南京210094
  • 相关基金:国家自然科学基金(61373063)
中文摘要:

TLD(Tracking-Learning-Detection)算法是近期受到广泛关注的一种长时间视觉跟踪算法.为提高该算法的运行速度,一种ATLD(Accelerated TLD)算法被提出,对原始TLD算法做了两方面改进:在检测模块引入基于灰色预测模型的目标位置估计和检测区域设置;运用基于NCC(Normalized Cross Correlation)距离的图像检索方法管理正负样本集.并在此基础上实现了多目标跟踪.通过实验比较了ATLD算法、原始TLD算法及两种近期改进的TLD算法.实验结果表明:ATLD算法在确保精度的前提下运行速度更快.

英文摘要:

Tracking-Learning-Detection(TLD) is a kind of long-term visual tracking algorithm which receiveds wide attention in recent years. In order to improve the running speed of this algorithm, a novel algorithm named Accelerated TLD(ATLD) is proposed in this paper. Two aspects of improvements were made in original TLD algorithm. The improvement includes as follows: using a grey prediction model in the detection module for estimating the location of the target and setting a detection area; applying an image indexing method based on normalized cross correlation(NCC) distance to manage the positive and negative sample set. And on this basis, the multiple targets tracking algorithm is realized. Through experiments, the ATLD algorithm, the original TLD algorithm and other two recent improved TLD algorithm are compared. The experimental results show that the ATLD algorithm runs faster on the premise of ensuring the accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:工业和信息化部
  • 主办单位:南京理工大学
  • 主编:廖文和
  • 地址:南京孝陵卫200号
  • 邮编:210094
  • 邮箱:zrxuebao@njust.edu.cn
  • 电话:025-84315600
  • 国际标准刊号:ISSN:1005-9830
  • 国内统一刊号:ISSN:32-1397/N
  • 邮发代号:
  • 获奖情况:
  • 1997年荣获原国家科委、中共中央宣传部、国家新闻...,2002年荣获首届江苏省期刊方阵"优秀期刊"称号,2004年获教育部"优秀编辑出版质量奖",2006年获教育部颁发的"首届中国高校优秀科技期刊奖",2008年度获教育部颁发的"第2届中国高校优秀科技期...,2009年上海市新闻出版局“第四届华东地区优秀期刊”奖,2010年工业和信息化部“编辑质量优秀”奖,2010年教育部“第三届
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国乌利希期刊指南,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9051