位置:成果数据库 > 期刊 > 期刊详情页
Computational multiscale methods for granular materials
  • ISSN号:2095-0349
  • 期刊名称:Theoretical and Applied Mechanics Letters
  • 时间:2013.1.1
  • 页码:-
  • 分类:O175.2[理学—数学;理学—基础数学] TQ02[化学工程]
  • 作者机构:[1]The State Key Laboratory for Structural Analysis of Industrial Equipment, Dalian University of Technology,Dalian 116024, China
  • 相关基金:supported by the National Natural Science Foundation of China(11072046,10672033,90715011 and 11102036);the National Basic Research and Development Program(973Program,2010CB731502)
  • 相关项目:基于细观力学信息的颗粒材料破坏过程宏观本构模型与表征
作者: 李锡夔|
中文摘要:

The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales, respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed.

英文摘要:

The fine-scale heterogeneity of granular material is characterized by its polydisperse microstructure with randomness and no periodicity. To predict the mechanical response of the material as the microstructure evolves, it is demonstrated to develop computational multiscale methods using discrete particle assembly-Cosserat continuum modeling in micro- and macro- scales,respectively. The computational homogenization method and the bridge scale method along the concurrent scale linking approach are briefly introduced. Based on the weak form of the Hu-Washizu variational principle, the mixed finite element procedure of gradient Cosserat continuum in the frame of the second-order homogenization scheme is developed. The meso-mechanically informed anisotropic damage of effective Cosserat continuum is characterized and identified and the microscopic mechanisms of macroscopic damage phenomenon are revealed. c 2013 The Chinese Society of Theoretical and Applied Mechanics. [doi: 10.1063/2.1301101]

同期刊论文项目
同项目期刊论文
期刊信息
  • 《力学快报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院力学研究所、中国力学学会
  • 主编:李家春
  • 地址:北京市海淀区北四环西路15号
  • 邮编:100190
  • 邮箱:taml@cstam.org.cn
  • 电话:010-82543904
  • 国际标准刊号:ISSN:2095-0349
  • 国内统一刊号:ISSN:11-5991/O3
  • 邮发代号:82-766
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版)
  • 被引量:6