将描述多组分系统的复合混合物理论与微极性连续介质力学理论相结合,建立了描述微极性多组分多孔介质材料的混合物理论.假定系统由多组分的微极性弹性固体和多组分微极性粘性流体组成.给出由混合物理论建立的系统的平衡方程.依据热力学第二定律以及本构假设建立了系统的本构方程,并使场方程闭合.为考虑固相的压缩性,在液相自由能函数中引入液相体积分数作为内变量,得到动力相容条件,用以限制固、液两相界面压力差的变化.最后,基于线性化理论得到线性化的本构方程和场方程,建立了考虑介质微极性的热一水力.力学组分输运模型.此理论框架可以运用到可变形多孔介质中污染物、药物以及农药输运等问题中.所得到的微极性多组分多孔介质系统的闭合场方程经退化后,可变为固、流相都为单一组分的多孔介质系统场方程,它与Eringen得到的结果一致.
A mixture theory is developed for multicomponent micropolar porous media by combination of the hybrid mixture theory and micropolar continuum theory. This system was modeled as muiticomponent micropolar elastic solids saturated with multieomponent micropolar viscous fluids. Balance equations were given through the mixture theory. Constitutive equations were developed based on the second law of thermodynamic and constitutive assumplions. For taking account of compressibility of solid phase, volume fraction of fluid as an independent state variable was introduced in free energy function, and the dynamic compatibility condition was obtained to restrict the change of pressure difference on solid and fluid interface. The constructed constitutive equations were used to close the field equations. The linear field equations were obtained with the linearization procedure,and the micropolar thermo-hydro-mechanical component transport model was established finally. This model can be applied to some practical problems, such as contaminant, drug and pesticide transport. When the proposed model is supposed to be the porous media,including both fluid and solid are single-component, it will almost agree with Eringen' s model.