所指的图是有限的、单的、无向的且无孤立点,p,q,t是素数,m,r是正整数且满足r横不等于1≡r^q(modp).获得了关于有限内循环群边传递的图的完全分类,结果为:设Г是一个图,G是一个阶为pq^m或t^2或8的内循环群,且G≤Aut(Г),则Г是G-边传递的当且仅当Г同构于下列图之一:(1)q^m-eCpq^e,0≤e〈m;(2)pq^m-eCq^e,1≤e〈m且(q,e)≠(2,1);(3)2^m-1pK1,1,q=2,m〉1;(4)pCq^m,(q,m)≠(2,1);(5)pK1,1,m=1;(6)Cay(Zp,C),C={±∥r^p|μ∈Zq},m=1;(7)B(Zp,C),其中C={1-r^j|j∈Zq},m=1;(8)Kq^m-e,m=1;(9)pKq^m,1;(10)Kpq^m,1;(11)Kq^m,p;(12)pq^eK1,q^m-e,1≤e≤m;(13)q^eK1,pq^m-e,1≤e≤m;(14)q^eKq^m-e,p,1≤e〈m;(15)tCr,t〉2;(16)2K1,1,t=2;(17)t^2K1,1;(18)tKt,1;(19)Kt,t(20)Kt^2,1;(21)2C4;(22)8K1,1;(23)2K4,1;(24)4K2,1;(25)K8,1.
All graphs are finite simple undirected ones with no isolated vertices in this paper, p,q and t are prime num- bers, m and r are positive integers,and r absolotely uneqvalto 1 ≡ r^q (rood p) . The classification of graphs is completed,on which an inner-cyclic group acts edge-transitively. The main result is following: Let P be a graph, G be an inner-cyclic group of order pq^m or t^2 or 8, and G ≤ Aut(Г) . Then G acts edge-transitively on Г if and only if Г is one of the following graphs: ( 1 ) q^m-eCpq^e,0≤ e ≤ m;(2)pq^m-eCq^e,1≤e〈m且(q,e)≠(2,1);(3)2^m-1pK1,1,q=2,m〉1;(4)pCq^m,(q,m)≠(2,1);(5)pK1,1,m=1;(6)Cay(Zp,C),C={±∥r^p|μ∈Zq},m=1;(7)B(Zp,C),where C={1-r^j|j∈Zq},m=1;(8)Kq^m-e,m=1;(9)pKq^m,1;(10)Kpq^m,1;(11)Kq^m,p;(12)pq^eK1,q^m-e,1≤e≤m;(13)q^eK1,pq^m-e,1≤e≤m;(14)q^eKq^m-e,p,1≤e〈m;(15)tCr,t〉2;(16)2K1,1,t=2;(17)t^2K1,1;(18)tKt,1;(19)Kt,t(20)Kt^2,1;(21)2C4;(22)8K1,1;(23)2K4,1;(24)4K2,1;(25)K8,1.