非线性的 Schrödinger (CNLS ) 方程为大气的严肃波浪从管理系统导出的 a coupled 的对称,对称减小,和准确解决方案在这篇论文借助于古典谎言组途径被研究。计算证明 CNLS 方程在一些 Galilee 的转变下面是不变的,放大转变,阶段移动,和时空翻译。一些平常的微分方程从 CNLS 方程被导出。包括为 CNLS 方程的信封 cnoidal 波浪,独居的波浪和三角法的功能答案的几个准确答案被使用对称也获得。
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.