位置:成果数据库 > 期刊 > 期刊详情页
用于队列管理的模糊增益神经元自适应控制器
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海交通大学自动化系,上海200240
  • 相关基金:国家自然科学基金项目(60574081)
中文摘要:

针对具有参数时变及非线性特性的网络拥塞控制系统,提出了一种模糊增益神经元主动队列管理算法(FN-AQM).采用路由器队列长度及数据流速作为拥塞度量,在检测当前拥塞信息的同时,预测未来拥塞的状况.结合神经元控制和模糊控制的优点,利用单神经元计算数据包标记概率,采用有监督的Hebb学习规则在线调整加权系数.设计的模糊控制器可动态调整神经元增益,能获得更好的控制性能.FN-AQM具有结构简单、易于实现、自适应能力强等优点.仿真实验结果表明,FN-AQM能快速将队列调整至目标值,并维持较小的队列抖动,对动态数据流和非响应流具有良好的鲁棒性.

英文摘要:

In light of the congestion control system with time-varying parameters and nonlinear property,a neuron control algorithm with fuzzy self-tuning gain(FN-AQM)is proposed for active queue management.Both queue length and traffic rate are employed as congestion indicators which detect both current and incipient congestion states.Combining the advantages of neuron control and fuzzy control strategies,the end-to-end mark probability is calculated by the neuron controller,in which the weights are adjusted on-line by supervisory Hebb learning rule.Additionally,fuzzy logic control is used to tune the gain of the neuron dynamically for improved network performance.The proposed scheme exhibits good adaptability and self-learning ability,being simple in form and easy to implement.Simulation in network simulator-2(NS2)demonstrates that FN-AQM can quickly stabilize the queue length to the target with small jitter,and shows strong robustness against dynamic traffics and non-responsive flows.

同期刊论文项目
期刊论文 30 会议论文 6
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684