位置:成果数据库 > 期刊 > 期刊详情页
协同环境下的竞争情报系统研究
  • ISSN号:1002-1965
  • 期刊名称:《情报杂志》
  • 时间:0
  • 分类:TP274.2[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] X24[环境科学与工程—环境科学]
  • 作者机构:[1]Department of Computer Science, Sun Yat-sen University, Guangzhou 510006, China, [2]Information Centre, Dongguan Power Supply Bureau, Guangdong Power Grid Co, Dongguan 523008, China, [3]Xinhua College, Sun Yat-sen University, Guangzhou 510000, China
  • 相关基金:This work was supported by the National Natural Science Foundation of China (60573159) and the Guangdong High Technique Project (201100000514).
中文摘要:

This paper proposes a hybrid approach for recognizing human activities from trajectories.First,an improved hidden Markov model(HMM) parameter learning algorithm,HMM-PSO,is proposed,which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation.Then,the event probability sequence(EPS) which consists of a series of events is computed to describe the unique characteristic of human activities.The analysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate.Finally,the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.

英文摘要:

This paper proposes a hybrid approach for recognizing human activities from trajectories. First, an improved hidden Markov model (HMM) parameter learning algorithm, HMM-PSO, is proposed, which achieves a better balance between the global and local exploitation by the nonlinear update strategy and repulsion operation. Then, the event probability sequence (EPS) which consists of a series of events is computed to describe the unique characteristic of human activities. The anatysis on EPS indicates that it is robust to the changes in viewing direction and contributes to improving the recognition rate. Finally, the effectiveness of the proposed approach is evaluated by data experiments on current popular datasets.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《情报杂志》
  • 北大核心期刊(2011版)
  • 主管单位:陕西省科学技术厅
  • 主办单位:陕西省科学技术信息研究所
  • 主编:薇子
  • 地址:西安市雁塔路南段99号
  • 邮编:710054
  • 邮箱:qbzz@263.net
  • 电话:029-85529749
  • 国际标准刊号:ISSN:1002-1965
  • 国内统一刊号:ISSN:61-1167/G3
  • 邮发代号:52-117
  • 获奖情况:
  • CSSCI来源期刊、中文核心期刊
  • 国内外数据库收录:
  • 中国中国人文社科核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43855