推进的太阳的航行是一个逐渐地吸引人的推进系统因为高度 non-Keplerian 转。轨道的尖动量颠倒(H 颠倒) 的三新应用用太阳的风帆的轨道被介绍:有流星的空间观察,以太阳为中心的轨道转移和碰撞轨道。为两倍 H 颠倒轨道的存在的一个理论证明(叫作“ H2RTs ”) 被给,并且 H2RTs 的特征在使命应用的讨论前被介绍。H2RTs 的一个新家庭用 3D 被获得二身体的框架的动态模型。在一个时间最佳的控制模型,在内并且在黄道飞机外面的最小的时期 H2RTs 用一张理想的太阳的风帆被检验。由于在它的二对称的 aphelia 的 quasi-heliostationary 性质, H2RTs 被认为对空间合适观察。为第二应用,以太阳为中心的转移轨道能作为时间最佳的 H 颠倒轨道工作,自从它的近日点速度是圆形或椭圆形的速度。如此的一条转移轨道能把 sailcraft 放进一顺时针方向在黄道飞机转,与高倾向或排水量在上面或在太阳下面。H 颠倒轨道的第三应用被模仿影响在迎头向前的碰撞的在土附近的星状的过去。碰撞点能通过选择不同 perihelia 或不同发射窗户被设计。每应用的样品轨道通过数字模拟被介绍。结果能为理论研究和工程设计用作一本参考书。
Advanced solar sailing has been an increasingly attractive propulsion system for highly non-Keplerian orbits.Three new applications of the orbital angular momentum reversal(H-reversal) trajectories using solar sails are presented:space observation,heliocentric orbit transfer and collision orbits with asteroids.A theoretical proof for the existence of double H-reversal trajectories(referred to as‘H2RTs’) is given,and the characteristics of the H2RTs are introduced before a discussion of the mission applications.A new family of H2RTs was obtained using a 3D dynamic model of the two-body frame.In a time-optimal control model,the minimum period H2RTs both inside and outside the ecliptic plane were examined using an ideal solar sail.Due to the quasi-heliostationary property at its two symmetrical aphelia,the H2RTs were deemed suitable for space observation.For the second application,the heliocentric transfer orbit was able to function as the time-optimal H-reversal trajectory,since its perihelion velocity is a circular or elliptic velocity.Such a transfer orbit can place the sailcraft into a clockwise orbit in the ecliptic plane,with a high inclination or displacement above or below the Sun.The third application of the H-reversal trajectory was simulated impacting an asteroid passing near Earth in a head-on collision.The collision point can be designed through selecting different perihelia or different launch windows.Sample orbits of each application were presented through numerical simulation.The results can serve as a reference for theoretical research and engineering design.