本文讨论一类拟线性椭圆型系统-Δpu=μ|u|^p-2u/|x|p+2αQ(x)/(α+β)|x|^s|u|^α-2u|v|^β+σ1|u|^q1-2 u,x∈Ω,-Δpv=μ|v|^p-2v/|x|p+2βQ(x)/(α+β)|x|^s|u|α|v|^β-2v+σ2|v|^q2-2v,x∈Ω,u=v=0,x∈δΩ,其中Δpu=div(|△↓u|^p-2△↓u)是p-Laplacian,2≤p〈N,Ω属于R^N是一个有界光滑区域,0∈Ω,且Ω关于O(N)的一个闭子群G对称,0≤μ〈μ^-,μ^=((N-p)/p)^p,σ1,σ2≥0,0≤s〈p,α,β〉1满足α+β=p^*(s)=(N-s)p/(N-p),p〈q1,q2〈p^*=Np/(N-p),Q(x)是Ω^-上的连续G对称函数.应用Palais对称临界原理和变分方法,我们建立了该系统几个全新的正G-对称解的存在性结果.
This paper is concerned with a class of quasilinear elliptic problem of the form -Δpu=μ|u|^p-2u/|x|p+2αQ(x)/(α+β)|x|^s|u|^α-2u|v|^β+σ1|u|^q1-2 u,x∈Ω,-Δpv=μ|v|^p-2v/|x|p+2βQ(x)/(α+β)|x|^s|u|α|v|^β-2v+σ2|v|^q2-2v,x∈Ω,u=v=0,x∈δΩ,whereΔpu=div(|△↓u|^p-2△↓u)is the p-Laplacian,2≤p〈N,Ω belong to R^N is a smooth bounded domain,0∈ΩandΩis G-symmetric with respect to a closed subgroup Gof O(N),0≤μ〈μ^- withμ^-=((N-p)/p)^p,σ1,σ2 ≥0,0≤s〈pandα,β〉1satisfyα+β=p^*(s)=(N-s)p/(N-p),p〈q1,q2〈p^*=Np/(N-p),Q(x)is continuous and G-symmetric on Ω^-.We establish several existence results of positive G-symmetric solutions by using the symmetric criticality principle of Palais and variational methods for this problem.