温室气体引起的全球变暖、气候变化等问题已成为国际关注的热点,其中C02是重要的温室气体之一,C02的监测与控制已经成为各国关注的重点。结合C02在1.6μm处的光谱吸收结构,利用加权函数修正的差分吸收光谱技术(weighted function modified difference absorption spectroscopy,WFM-DOAS)研究大气中C02垂直柱浓度的反演方法。利用大气辐射传输模型仿真研究了不同参数对加权函数(weighted function,WF)计算灵敏度的影响,分别对观测高度、太阳天顶角、太阳方位角、地表反照率、光谱分辨率等参数对C02 WF系数的影响进行了详细的计算分析。并以一整天测量的太阳光为例,对仪器的性能、C02的垂直柱浓度及干扰气体CH4及H2O的垂直柱浓度进行了分析,初步分析得到的反演误差优于1%。
Global warming, climate change and other issues caused by greenhouse gases have been the hotspot of international concern. CO2 is one of the important greenhouse gas, monitoring and controling of CO2 have been the focus of all countries. Based on the spectral absorption structure of CO2 in the 1.6μm, the retrieval algorithm applied to obtain the CO2 column information from spectroscopic measurements was researched by using the weighted function modified difference absorption spectroscopy (WFM-DOAS) method. Based on atmospheric radiative transfer model, effects of the parameters on the sensitivity of the weighted function (WF) calculation were studied and simulated. The influence of different parameters on CO2 WF coefficient is calculated and analyzed in detail, including observation height, the solar zenith angle, solar azimuth, surface albedo, spectral resolution and so on. And based on the sunlight spectrum of zenith direction, the performance of the instrument, COs vertical column concentration and disturbance, and CH4 and H20 vertical column concentration were analyzed. And a preliminary analysis of the inversion error is better than 1%.