本文利用Ekeland的变分原理及山路引理,研究了以下问题在一定条件下的正解的存在性:{-△ pu=λuq/|x|s+ur,u〉0,x∈ΩСRN,u(x)=0,x∈ Ω,其中△pu=div(| u|p-2 u),u∈W10,p(Ω)Ω是RN中的有界区域,且0∈Ω,0〈q〈p-1,N≥3,0〈s〈N(p-q-1)p-1+1+1,p-1〈r≤p*-1,p*=Np(N-p)-1,λ〉0,此时,s可以大于p,从而推广了p=2时的某些结果。
This paper is concerned with existence of positive solutions for the following nonlinear problem at some conditions by Ekeland's variational principle and the mountain pass lemma{-△ pu=λuq/|x|s+ur,u〉0,x∈ΩСRN,u(x)=0,x∈ Ω wher△pu=div(| u|p-2 u),u∈W10,p(Ω)Ωis a bounded domain of RN and 0∈Ω,0〈q〈p-1,N≥3,0〈s〈N(p-q-1)p-1+1+1,p-1〈r≤p*-1,p*=Np(N-p)-1,λ〉0,Some results as p=2 are generalized.