位置:成果数据库 > 期刊 > 期刊详情页
一种基于用户动态兴趣和社交网络的微博推荐方法
  • ISSN号:0372-2112
  • 期刊名称:《电子学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京工业大学计算机科学与技术学院,江苏南京211816, [2]中国人民解放军73677部队,江苏南京210016
  • 相关基金:国家自然科学基金(No.61203072); 江苏省重点研发计划(社会发展)(No.BE2015697)
中文摘要:

针对为微博用户推荐符合其兴趣取向的个性化微博信息的问题,结合LDA主题模型,提出了一种基于用户动态兴趣和社交网络(DISN)的微博推荐方法.DISN方法首先引入时间函数,推断出用户的兴趣向量,通过对新发布的微博数据内容进行聚类分组,以用户兴趣向量筛选与用户最匹配的分组,随后以网格索引的形式对选定的分组中微博进行查询,计算微博发布者被目标用户关注的可能性并进行排序,最终形成推荐列表.实验验证了DISN方法较之传统方法更具有效性和高效性.

英文摘要:

To recommend useful microblogs that match users' interests and likes effectively, an approach in which the dynamic interests and social networking (DISN) of users are seamlessly integrated based on LDA model is proposed. The approach infers the interest vector of users better by using time function and groups the new published microblogs by cluste- ring method and gets the best matching groups with users' interest vector. Then DISN traverses the selected groups by grid querying approach and matches the microblogs with publishers' probabilities of being followed and sorts the result. Finally the personalized microblogging recommendation is achieved. Experimental results show that DISN is more effective and effi- cient than the traditional models.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:郝跃
  • 地址:北京165信箱
  • 邮编:100036
  • 邮箱:new@ejournal.org.cn
  • 电话:010-68279116 68285082
  • 国际标准刊号:ISSN:0372-2112
  • 国内统一刊号:ISSN:11-2087/TN
  • 邮发代号:2-891
  • 获奖情况:
  • 2000年获国家期刊奖,2000年获国家自然科学基金志项基金支持,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:57611