位置:成果数据库 > 期刊 > 期刊详情页
Spark平台下基于上下文信息的影片混合推荐
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]武汉大学计算机学院软件工程国家重点实验室,武汉430070, [2]湖北第二师范学院计算机学院,武汉430070
  • 相关基金:国家自然科学基金(No.61572374,No.U1135005).
中文摘要:

响应速度较慢和推荐内容与用户上下文信息匹配程度低是当前影片推荐系统迫切需要解决的问题。针对上述挑战,提出Spark平台下基于上下文信息的影片混合推荐方法。它利用分布式并行计算技术Spark进行加速,来提高系统对于海量数据的检索与计算速度,从而减少了系统响应时间。同时该方法将“上下文推荐”和“交替最小二乘的协同过滤(ALS)”融合成一种混合推荐方法,提高了系统的推荐精度。实验结果表明,所提出的混合推荐方法有不错的效果。

英文摘要:

Slow response and recommended movies inconsistent with the users’requests are key urgent problems in current movie recommendation system.To address this problem,a context-aware movie hybrid recommendation method on Spark platform is proposed.The method takes advantage of Spark,a distributed parallel computing technology,to improve retrieval and calculation speed for mass data,which reduces the response time of the recommendation system.At the same time,it fuses the user’s context information and ALS(Alternating Least Squares of collaborative filtering)to a hybrid recommendation method,which improves the recommendation accuracy of system.The results show that our method has a better performance than others.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887