位置:成果数据库 > 期刊 > 期刊详情页
Multiobjective Particle Swarm Optimization Without the Personal Best
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China, [2]Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • 相关基金:the Research Funds of Shanghai Municipal Science and Technology Commission (No. 12511502902) and the National Natural Science Foundation of China (No. 61375053)
中文摘要:

The personal best is an interesting topic, but little work has focused on whether it is still efficient for multiobjective particle swarm optimization. In dealing with single objective optimization problems, a single global best exists, so the personal best provides optimal diversity to prevent premature convergence. But in multiobjective optimization problems, the diversity provided by the personal best is less optimal, whereas the global archive contains a series of global bests, thus provides optimal diversity. If the algorithm excluding the personal best provides sufficient randomness, the personal best becomes worthless. Therefore we propose no personal best strategy that no longer uses the personal best when the global archive exceeds the population size. Experimental results validate the efficiency of our strategy.更多还原

英文摘要:

The personal best is an interesting topic, but little work has focused on whether it is still efficient for multiobjective particle swarm optimization. In dealing with single objective optimization problems, a single global best exists, so the personal best provides optimal diversity to prevent premature convergence. But in multi- objective optimization problems, the diversity provided by the personal best is less optimal, whereas the global archive contains a series of global bests, thus provides optimal diversity. If the algorithm excluding the personal best provides sufficient randomness, the personal best becomes worthless. Therefore we propose no personal best strategy that no longer uses the personal best when the global archive exceeds the population size. Experimental results validate the efficiency of our strategy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136