给定一个正整数序列Q={q_k}_k≥1,其中q_k≥2.任意的x∈[0,1]对应唯一的Q-Cantor展式.令T_Qn(x)=q_1···q_nx-「q_1···q_nx」.对于任意的正函数φ:N→(0,1)和序列y={y_n}≥1?[0,1],本文考虑集合E_y(φ):={x∈[0,1]:|T_Qn(x)-y_n|〈φ(n)i.o.n}的大小,指出了集合E_y(φ)的Lebesgue测度和Hausdorff测度结果只依赖特定级数的敛散性,与y={y_n}_(n≥1)无关.
Let Q = {q_k}_(k≥1) be a sequence of positive integers with q_k ≥ 2 for every k ≥ 1. Then each point x ∈ [0, 1] is attached with an infinite series expansion which is called the Q-Cantor series expansion of x. Put T_Qn(x) = q_1 · · · q_nx-「q_1· · · q_nx」. For any positive function φ : N →(0, 1) with φ(n) → 0 as n → ∞ and any sequence y = {y_n}_(n≥1) [0, 1],we consider the size of the set E_y(φ) := {x ∈ [0, 1] : |T_Qn(x)-y_n| φ(n) i. o. n}. In this paper, we show that both the Lebesgue measure and the Hausdorff measure of E_y(φ) fulfill a dichotomy law according to the divergence or convergence of certain series.