<正>1引言不可压Navier-Stokes方程作为流体力学的基本方程,其数值计算一直是科学与工程计算关心的问题.本文考虑定常问题: -ε△u+(u·▽)u+▽p = f x∈Ω,▽·u=0 x∈Ω, (1) u =0 x∈(?)Ω.这里ε=1/Re是Reynolds数的倒数,u=(u1,u2,…,ud)为待求流速场,p是待求压力场,f=(f1,f2,…,fd)是给定的体力.Ωv(?) Rd(d=2,3)是有界区域,且具有分片Lipschitz连续边界(?)Ω.
In this paper we present an upwind finite element scheme for the stationary incompressible Navier-Stokes equations in two-dimensional domain. We analyse the solvability of the discrete problem and give a posteriori error estimates in a specific energy norm. Some remarks are discussed for the abstract estimator. Numerical examples prove the feasibility of the scheme and robust performance of the estimators.