位置:成果数据库 > 期刊 > 期刊详情页
基于故障传播模型与监督学习的电力通信网络故障定位
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国家电网芜湖供电公司,安徽芜湖241000, [2]中国科学技术大学计算机科学与技术学院,合肥230027
  • 相关基金:国家自然科学基金资助项目(61379130)~~
中文摘要:

针对电力通信网络中的故障定位问题,分析了一种网络设备或链路故障引发的大范围连通片故障告警情形,提出一种基于故障传播模型和监督分类学习方法的故障定位算法。首先使用改进的故障传播模型求得初步定位结果,用最少的故障数目解释当前告警;然后通过故障源-故障告警向量分解将故障定位问题转化为监督分类问题,定位告警区域内部故障;最后加入猜测的故障设备和故障链路完善定位结果以提高定位准确率。模拟结果表明提出的故障定位算法的故障检测率达到84%~95%,具有较高的故障定位可靠性。

英文摘要:

To solve the fault localization problem in electric power communication network,the large-scale connected area fault alarms caused by device or link faults were investigated,and a fault localization algorithm based on fault propagation model and supervised learning method was proposed. First,an improved fault propagation model was used to obtain an initial result with the minimum faults. Then the fault localization problem was transformed into a supervised classification problem by fault alarm vector decomposition to localize the faults within the fault warning areas. Finally,conjectural fault devices and links were added to improve the location results of previous two steps and increase the accuracy. The simulation results show that accuracy of fault localization of the proposed algorithm reaches 84%- 95%,which achieves high reliability in fault location.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679