位置:成果数据库 > 期刊 > 期刊详情页
基于RBF的TCP网络自适应滑模控制
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110819
  • 相关基金:国家自然科学基金资助项目(60274009); 国家高技术研究发展计划项目(2004AA412030)
中文摘要:

针对TCP网络的拥塞控制问题,提出了一种基于RBF神经网络的自适应滑模控制算法.为了简化滑模控制器的设计,将系统的各个不确定参数和非线性补偿整合成一个总的不确定.考虑到网络系统的不确定性上界很难获得,使用RBF神经网络对系统不确定的上界进行自适应学习.将RBF神经网络的输出作为不确定上界的补偿,从而消除了系统的不确定带来的影响.应用RBF神经网络设计了一个自适应滑模控制器,所设计的控制器既保证了滑动模态的存在和系统的渐近稳定性,又较好地抑制了系统不确定带来的影响.仿真结果证实了该算法具有良好的稳定性和鲁棒性.

英文摘要:

For the problem of congestion control in TCP networks,an adaptive sliding mode control algorithm is presented based on the RBF neural network.To simplify the design of the sliding mode controller,the uncertain parameters of the systems and the nonlinear compensation of the systems are incorporated into a lumped uncertainty.Since the upper bound of the system uncertainties may not easily be obtained,a RBF neural network is used to learn the upper bound of system uncertainties.And the output of the RBF neural network is used to compensate the upper bound of system uncertainties,so that the effects of the system uncertainties can be eliminated.The RBF neural network is used to design an adaptive sliding mode controller which not only ensure the existence of the sliding mode on the surface and asymptotic stability of the systems,but also eliminate the effects of the system uncertainties.Simulation results verify the favorable stability and robustness of the algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296