通过给出一般算子半群T(t)的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T(t)=e^tA在适当的条件下是非游荡的;另外。通过对C-半群T(t)概念的引进,定义了一个无界算子半群e^tA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群e^tP(B)关于非游荡性理论的刻画,其中P(B)是微分多项式.
By introducing the general notion of nonwandering operator semigroup T(t) and utilizing a basic result in normed linear space, the nonwandering property of T(t) = e^tA is investigated with the constructive method. It is a strong, continuous solution semigroup of linear evolution equation with variant coefficients. Meanwhile, an unbounded semigroup e^tA is defined by introducing the notion of C-semigroup. At last, the nonwandering theory of unbounded semigroup e^tP(B) is characterized ,where P(B) is differential polynomial.