支持向量机在语种识别技术中获得了广泛的研究和应用,并且达到和传统混合高斯模型相当的性能。高斯超向量.支持向量机系统将高斯混合模型与支持向量机有效地结合起来,采用高斯超向量核函数,以支持向量机作为后端分类器。重点介绍基于高斯超向量一支持向量机的语种识别系统,并和传统的高斯混合模型系统进行比较。在美国国家标准技术研究院2003年和2007年语种识别评测数据集上进行实验。实验结果表明,高斯超向量.支持向量机系统相对于混合高斯模型建模的方法,在长时数据上有较明显的性能优势。
The Support Vector Machine(SVM) has been widely used in language recognition. It has reached comparable perfor- mance with the traditional Gaussian Mixture Model(GMM). Gaussian Super Vector-Support Vector Machine (GSV-SVM), which effectively combines GMM and SVM, is presented in this paper. The experiments are carried out on the NIST LRE2003 and LRE2007 test corpus. The results indicate that the GSV-SVM system can achieve significant improvements on the long-time duration test set, compared with the method of GMM.