对2002年Yang Xiao jing发表于Linear Algebra and its Application上的矩阵不等式的证明做了简化,并将结论改进为:给定非负的m×n矩阵X=(xo)并且X≠0,则对任意实数p≥1,有 n^r∑i=1^m(∑j=1^nxu)^p+m^r∑j=1^n(∑i=1^mxij)^p/(∑i=1^m ∑j=1^nxij)^p+(mn)^r∑i=1^m∑j=1^nxij^p≥m^r+n^r/(mn)^r+min(m^r,n^r). 并给出了不等式中等号成立的充要条件.
Suppose X= (xij) be an m×n matrix with non-negative real entries, which are not all equal to O. Then for p≥1, τ=p-1,one derives n^r∑i=1^m(∑j=1^nxu)^p+m^r∑j=1^n(∑i=1^mxij)^p/(∑i=1^m ∑j=1^nxij)^p+(mn)^r∑i=1^m∑j=1^nxij^p≥m^r+n^r/(mn)^r+min(m^r,n^r).the necessary and sufficient conditions are obtained when equality holds.