本文研究三维半空间中不可压磁流体力学方程组弱解的衰减性.当方程满足初始条件(u0,b0)∈L^1(R+^3)∩L^2(R+^3),(x3^2u0,x3^2b0)∈L^2(R+^3),(x3U0,x3b0)∈L^1(R+^3)∩L(6/5)(R+^3)时,证明了弱解(u(t),b(t))的衰减率为:‖(x3u(t),x3b(t))‖L^2(R+^3)≤c(1+t)^-5/8,其中c是与t无关的常数.
In this paper we study the L^2 time decay rate of a weak solution of the 3-dimensional incompressible Magnetohydrodynamic equations in the half space. We prove that, for initial value (U0, b0)∈L^1(R+^3)∩L^2(R+^3),(x3^2u0,x3^2b0)∈L^2(R+^3),(x3U0,x3b0)∈L^1(R+^3)∩L(6/5)(R+^3),the weak solution satisfying time decay estimates ‖(x3u(t),x3b(t))‖L^2(R+^3)≤c(1+t)^-5/8, for some c independent of t.