位置:成果数据库 > 期刊 > 期刊详情页
Influence of fabric anisotropy on seismic responses of foundations
  • ISSN号:1674-7755
  • 期刊名称:《岩石力学与岩土工程学报:英文版》
  • 分类:O3[理学—力学]
  • 作者机构:[1]Department of Civil Engineering, Case Western Reserve University, Cleveland, OH 44106, USA, [2]Department of Civil Engineering, Shenzhen University, Shenzhen 518060, China
  • 相关基金:support by National Natural Science Foundation of China under Grant No. 51278307
中文摘要:

Earthquakes, as one of the well-known natural disasters, are highly destructive and unpredictable.Foundation failure due to liquefaction induced by earthquakes can cause casualties as well as significantdamage to the building itself. Fabric anisotropy of soil grains is considered to be an important factor indynamic soil response based on previous researches and laboratory tests. However, the limited availabilityof real physical data makes it less persuasive. In this study, a shake table installed on ageotechnical centrifuge is used to provide the designed seismic motions, and therefore, to simulate therealistic earthquake motion to foundations. Important parameters in the responses such as acceleration,excess pore pressure and deformation are evaluated to investigate the influence. Implications for designare also discussed. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.

英文摘要:

Earthquakes, as one of the well-known natural disasters, are highly destructive and unpredictable.Foundation failure due to liquefaction induced by earthquakes can cause casualties as well as significantdamage to the building itself. Fabric anisotropy of soil grains is considered to be an important factor indynamic soil response based on previous researches and laboratory tests. However, the limited availabilityof real physical data makes it less persuasive. In this study, a shake table installed on ageotechnical centrifuge is used to provide the designed seismic motions, and therefore, to simulate therealistic earthquake motion to foundations. Important parameters in the responses such as acceleration,excess pore pressure and deformation are evaluated to investigate the influence. Implications for designare also discussed. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《岩石力学与岩土工程学报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院武汉岩土力学研究所、中国岩石力学与工程学会、武汉大学
  • 主编:
  • 地址:湖北省武汉市小洪山中科院武汉岩土所
  • 邮编:430071
  • 邮箱:
  • 电话:027-87198182
  • 国际标准刊号:ISSN:1674-7755
  • 国内统一刊号:ISSN:42-1801/O3
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰地学数据库
  • 被引量:50