位置:成果数据库 > 期刊 > 期刊详情页
一种基于机器学习的指纹纹路方向计算方法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,长沙410073
  • 相关基金:国家自然科学基金项目(60603015,60373023) Fingerprint recognition is one of the popular methods of biometric authentication. Although many advances have been made on fingerprint recognition, it is still a challenging pattern recognition problem. There are two typical stages for fingerprint recognition: feature extraction and matching. Orientation field estimation is the basis of fingerprint recognition, since the accuracy of feature extraction heavily relies on the ridge orientation estimation. Most existing orientation estimation methods are based on the characteristic of pixel intensity in a block. In this paper neural network is used to learn the ridge orientation. The trained network has the property of responding to true ridge orientation with a large value and responding to the false ridge orientation with a small value. When estimating fingerprint ridge orientation, the responded values to each orientation at each image block are used to compute the fingerprint orientation field. The proposed method turns out more robust than the existing method. This work is sponsored by the National Natural Science Foundation of China ((1)60603015 ; (2)60373023).
中文摘要:

纹路方向是指纹图像的基本特征,而方向计算是指纹识别的基础,特征提取和匹配的过程中都需要用到方向.目前大多数纹路方向计算方法都是基于像素之间的灰度关系的.提出了一种用神经网络学习纹路方向的方法.对于正确的纹路方向,该网络的响应值较大;对于错误的纹路方向,该网络的响应值较小.计算指纹图像的方向场时,对于每个纹路图像块,计算网络在各个方向上的响应值,基于每个图像块在每个方向上的响应值可以计算出整个图像的方向场.该方法比现有方法更能正确地计算指纹图像方向场.

英文摘要:

Fingerprint recognition is a method for biometric authentication. Fingerprint image consists of interleaving ridges and valleys. Ridge termination and bifurcation, uniformly called minutia, are generally used for fingerprint matching. Automatic fingerprint recognition typically goes through a series of processes, including ridge orientation estimation, segmentation, enhancement, minutiae detection and matching. Ridge orientation is one of the fundamental features of a fingerprint image. And orientation estimation is the basis of fingerprint recognition, since it serves for segmentation, enhancement, minutiae extraction and matching. Most existing orientation estimation methods are based on the characteristic of pixel intensity in a block. In this paper neural network is used to learn the ridge orientation. At the training stage, the correct orientations are fed into the network as positive samples, and the incorrect orientations are fed into the network as negative samples. The trained network has the property of responding to true ridge orientation with a large value and of responding to the false ridge orientation with a small value. When estimating fingerprint ridge orientation, the responded values to each orientation at each image block are used to compute the fingerprint orientation field. The proposed method turns out to be more robust than the existing method.

同期刊论文项目
期刊论文 24 会议论文 33 专利 1
期刊论文 31 会议论文 20 获奖 4
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349