以神经元局域场分布为基础,重新研究了连续神经元传输函数对具有联想记忆的人工神经网络功能的影响.与以往的认识不同的是,研究发现连续传输函数与硬极限传输函数相比并不存在明显的优越性,相反,连续传输函数对网络的某些功能,如最大存储率具有负面影响.研究表明神经网络的特性主要决定于网络的动力学结构(具体体现为网络吸引子对应的神经元局域场分布),网络的动力学结构可以通过选择合适的设计规则进行有效控制,不同的传输函数虽然也能影响到网络的动力学结构,但是它所带来的影响是被动的,可控性很差.
By analysis of local field distribution of the neurons in stationary state of associative memory neural networks, the role of the analog neuron transfer function in affecting the neural network performance is re-investigated. Different from the research done before, we find that the analog transfer function has no obvious advantages over the hard limit transfer function. Furthermore, analog transfer function sometimes produces a negative impact on certain functions of the network, such as the maximal storage capacity. We show that in pursuing the same performance a proper design rule is more essential than the choice of the transfer function.