位置:成果数据库 > 期刊 > 期刊详情页
一种基于粗糙集属性约简的多分类器集成方法
  • ISSN号:1001-3695
  • 期刊名称:计算机应用研究
  • 时间:0
  • 页码:1648-1650
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013, [2]东南大学经济管理学院,南京211189
  • 相关基金:国家自然科学基金资助项目(70971067); 江苏省自然科学基金资助项目(BK2010331)
  • 相关项目:基于DM技术的企业舞弊分析的审计服务系统研究
中文摘要:

为提高多分类器系统的分类精度,提出了一种基于粗糙集属性约简的分类器集成方法 MCS_ARS。该方法利用粗糙集属性约简和数据子集划分方法获得若干个特征约简子集和数据子集,并据此训练基分类器;然后利用分类结果相似性得到验证集的若干个预测类别;最后利用多数投票法得到验证集的最终类别。利用UCI标准数据集对方法 MCS_ARS的性能进行测试。实验结果表明,相较于经典的集成方法,方法 MCS_ARS可以获得更高的分类准确率和稳定性。

英文摘要:

To improve the accuracy of multiple classifier system,this paper proposed an classifier ensemble method MCS_ARS.This method used rough set attribute reduction and data partition to obtain a number of features subset and data subset to train base classifier,then it used the similarity of the classification results to get the results of validation set and got the final classification results of validation set by majority voting.Experiment results on UCI data sets show that compared to classical ensemble methods,MCS_ARS has higher classification accuracy and stability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049