位置:成果数据库 > 期刊 > 期刊详情页
数据流中的频繁标记闭子树的批量挖掘
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京邮电大学信息与通信工程学院,北京100876
  • 相关基金:国家自然科学基金项目(60905017);国家高技术研究发展计划项目(2007AA012417)
中文摘要:

在频繁模式挖掘(FPM)的研究中,为了在海量数据流中有效地挖掘子树结构的频繁模式,根据数据流和子树模式的特点,提出了一种基于数据流的频繁标记闭子树挖掘(SFCL Tree Miner)算法.该算法首次对动态数据流中频繁标记闭子树的挖掘进行研究,给出了在数据流中标记闭子树集合添加、删除的批量挖掘方法,并结合时间衰减模型,有效保证了结果的时效性.实验结果表明,该算法在挖掘性能,如挖掘时间和内存占用等方面,比类似算法有较大提高.

英文摘要:

Compared with the classic frequent pattern mining (FPM) algorithms, the dynamic FPM algo- rithms on fast and massive data streams have become top research nowadays. A new batch mining algo-rithm in data streams called stream frequent closed labeled tree miner (SFCLTreeMiner) is proposed. SFCLTreeMiner uses a kind of adding-removing method between closed tree sets. Also it provides a time decay module for reasonable data updating. Experiment shows that SFCLTreeMiner is efficient in data streams mining by reducing consuming dramatically.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684