蛋白质的动态功能调控并决定着细胞的生理和病理过程。其不仅受到蛋白质本身生物化学特性的影响,还受到生物体内复杂的生物力学微环境的动态调控。这些生物力因素主要通过耦联生物化学特性来改变蛋白质的动态相互作用、构象变化以及后续的信号传导。近些年来,单分子力谱检测技术突破了传统生物化学技术的限制,在单分子水平有效地研究生物力学——化学耦联调控下的蛋白质动态功能。本文详细介绍了4种代表性的单分子力谱检测技术(原子力显微镜、光镊、生物膜力学探针以及磁镊),着重介绍这些技术在蛋白质动态功能研究方面的典型应用,主要包括蛋白质动态相互作用,蛋白质动态构象变化以及信号传导等。同时,本文还介绍了几种常用的基于上述单分子检测技术的单分子力谱检测方法,主要用于定量检测蛋白质相互作用、构象变化等生物化学过程的分子动力学参数。最后,本文还简要讨论了单分子力谱检测技术的未来发展方向,特别是如何与其他研究手段的有机整合,更全面地研究蛋白质的动态功能。我们希望该综述能够给更多的生物化学家带来新的概念和工具,帮助更全面地研究蛋白质的动态特性。
Dynamic functions of proteins regulate and determine the physiological and pathological processes of ceils. They are not only regulated by protein' s intrinsic biochemical characteristics, but also by complex biomechanical microenvironrnents in vivo. The biomechanical cues often couple with biochemical cues to cooperatively modulate dynamics of protein-protein interactions, protein conformations and subsequent signal transduction. Recently, in order to investigate how biomechanical cues regulate protein dynamics, single-molecule force spectroscopy (SMFS) has been developed to successfully break the limits of traditional biochemical assays, effectively revealing protein dynamics and their regulation mechanisms. In this review, we mainly introduce four representative SMFS techniques (atomic force microscopy, optical tweezers, biomembrane force probe and magnetic tweezers) in details, and focus on their typical applications in investigating most important aspects of protein dynamics. Additionally, we also introduce commonly used force-spectroscopy assays that have been extensively applied along with above SMFS techniques, to precisely quantify the kinetics of protein-protein interactions (especially protein dissociations under biomechanieal force) and conformational changes. Finally, we briefly envision future direction of the development of SMFS techniques, especially discussing how to integrate other functional assays with SMFS to study the dynamic functions of proteins in a more comprehensive way. We hope this review provide new concepts and tools for the field of biochemistry to help more biochemists to study protein dynamic functions in a more comprehensive way.