位置:成果数据库 > 期刊 > 期刊详情页
Wetting patterns and bacterial distributions in different soils from a surface point source applying eflfuents with varyingEscherichia coliconcentrations
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:S858.315.1[农业科学—临床兽医学;农业科学—兽医学;农业科学—畜牧兽医] TP317[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources andHydropower Research, Beijing 100048, P.R.China
  • 相关基金:This study was ifnancialy supported by the National Natural Science Foundation of China (51339007). The authors thank Dr. Cong Haolong (assistant research felow, Chinese Academy of Sciences, China) for givingE. coli DH5α-3C-GFP, and appreciate his help during the PCR detection and preparation of the manuscript. We also thank Dr. Zhang Jianjun (assistant research felow, Chinese Academy of Ag-ricultural Sciences, China) for suggestions in the experiment preparation and sample taking
中文摘要:

Understanding bacterial transportation in unsaturated soil is helpful for reducing and avoiding pathogenic contamination that may be induced by irrigation with reclaimed waste water and for developing better irrigation management practices. Experiments were conducted to study the transport of a typical bacterium, Escherichia coli(E. coli), in a sandy and a sandy loam soil under different application rates and input concentrations. A 30° wedge-shaped plexiglass container was used to represent one twelfth of the complete cylinder in the experiments. The apparent cylindrical application rate varied from 1.05 to 5.76 L h–1 and the input concentration of E. coli from magnitude of 102 to 107 colony-forming unit(CFU) m L–1. F or a given volume of water applied, an increase in application rate resulted in an increase in the wetted radius and a decrease in the wetted depth. In the sandy loam soil, the water spread out in a circular-arc shaped saturated zone on the surface, and the ultimate saturated entry radius increased with the application rate. An increasing application rate of water suspended bacteria allowed a more rapid transport of bacteria, thus accelerating E. coli transport rate and resulting in a larger distributed volume of E. coli for both soil types. For the sandy soil, more than 70% of the E. coli that was detected within the entire wetted volume concentrated in the range of 10 cm from the point source, and the concentration of E. coli decreased greatly as the distance from the point source increased. More than 98% of the E. coli was detected in a range of 5 cm around the saturated wetted zone for the sandy loam soil. For both soil types tested, an extremely high concentration of E. coli was observed in the proximity of the point source, and the peak value increased with an increased input concentration. In principle, using an emitter with relative lower application rate would be effective to restrict E. coli transport. To reduce bacterial concentration in the sewage effluent during wastewater treatme

英文摘要:

Understanding bacterial transportation in unsaturated soil is helpful for reducing and avoiding pathogenic contamination that may be induced by irrigation with reclaimed waste water and for developing better irrigation management practic-es. Experiments were conducted to study the transport of a typical bacterium,Escherichia coli (E. coli), in a sandy and a sandy loam soil under different application rates and input concentrations. A 30° wedge-shaped plexiglass container was used to represent one twelfth of the complete cylinder in the experiments. The apparent cylindrical application rate varied from 1.05 to 5.76 L h–1 and the input concentration ofE. coli from magnitude of 102 to 107 colony-forming unit (CFU) mL–1. For a given volume of water applied, an increase in application rate resulted in an increase in the wetted radius and a decrease in the wetted depth. In the sandy loam soil, the water spread out in a circular-arc shaped saturated zone on the surface, and the ultimate saturated entry radius increased with the application rate. An increasing application rate of water suspended bacteria alowed a more rapid transport of bacteria, thus acceleratingE. coli transport rate and resulting in a larger distributed volume ofE. coli for both soil types. For the sandy soil, more than 70% of theE. coli that was de-tected within the entire wetted volume concentrated in the range of 10 cm from the point source, and the concentration of E. colidecreased greatly as the distance from the point source increased. More than 98% of theE. coli was detected in a range of 5 cm around the saturated wetted zone for the sandy loam soil. For both soil types tested, an extremely high concentration ofE. coli was observed in the proximity of the point source, and the peak value increased with an increased input concentration. In principle, using an emitter with relative lower application rate would be effective to restrictE. coli transport. To reduce bacterial concentration in the sewage eflfuent during wastewater treatme

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231