2006年12月—2008年6月,通过加倍降水、自然降水和去除降水3种处理的人工控制试验,研究了降水变率改变对南亚热带不同演替阶段的季风常绿阔叶林、针阔叶混交林和马尾松针叶林土壤有机碳组分与空间分布格局的影响.结果表明:在3种降水强度条件下,相同森林类型的同一层次土壤总有机碳(TOC)含量差异不显著(P〉0.05);去除降水处理下土壤表层(0~10cm)颗粒有机碳(POC)和轻组有机碳(LFOC)含量有明显的积累趋势,加倍降水和自然降水处理下增加了POC、LFOC向下层土壤(10~20cm、20~30cm、30~50cm)的运输;去除降水处理下,马尾松林土壤易氧化有机碳(ROC)含量显著高于降水处理(P〈0.05);演替早期森林土壤的POC、ROC、LFOC占总有机碳的比例大于演替后期土壤,不利于土壤有机碳的存埋.森林土壤总有机碳含量变化缓慢,而其活性有机碳组分(POC、LFOC、ROC)对降水变率改变的响应更敏感.
From December 2006 to June 2008,a field experiment was conducted to study the effects of natural precipitation,doubled precipitation,and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest,pine and broad-leaf mixed forest,and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P0.05). In treatment no precipitation,particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation,the two fractions were infiltrated to deeper soil layers. Under pine forest,soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P0.05). The percentage of soil POC,ROC,and LFOC to soil TOC was much greater under the forests at early successional stage than at climax stage,suggesting that the forest at early successional stage might not be an ideal place for soil organic carbon storage. Precipitation intensity less affected TOC,but had greater effects on the labile components POC,ROC,and LFOC.