位置:成果数据库 > 期刊 > 期刊详情页
Decoupling coefficients of dilatational wave for Biot's dynamic equation and its Green's functions in frequency domain
  • ISSN号:0253-4827
  • 期刊名称:《应用数学和力学:英文版》
  • 时间:0
  • 分类:O175.29[理学—数学;理学—基础数学]
  • 作者机构:[1]City College, Zhejiang University, Hangzhou 310012, China, [2]Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China, [3]College of Civil Engineering and Architecture, University of Mississippi, Mississippi 38677-1848, U. S. A.
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 51478435, 11402150, and 11172268)
中文摘要:

Green’s functions for Biot’s dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering,rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green’s functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term 'decoupling coefficient' for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green’s functions. The correctness of the solution is demonstrated by numerically comparing the current solution with Cheng’s previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green’s functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method(BEM) and other applications.更多还原

英文摘要:

Green's functions for Blot's dynamic equation in the frequency domain can be a highly useful tool for the investigation of dynamic responses of a saturated porous medium. Its applications are found in soil dynamics, seismology, earthquake engineering, rock mechanics, geophysics, and acoustics. However, the mathematical work for deriving it can be daunting. Green's functions have been presented utilizing an analogy between the dynamic thermoelasticity and the dynamic poroelasticity in the frequency domain using the u-p formulation. In this work, a special term "decoupling coefficient" for the decomposition of the fast and slow dilatational waves is proposed and expressed to present a new methodology for deriving the poroelastodynamic Green's functions. The correct- ness of the solution is demonstrated by numerically comparing the current solution with Cheng's previous solution. The separation of the two waves in the present methodology allows the more accurate evaluation of Green's functions, particularly the solution of the slow dilatational wave. This can be advantageous for the numerical implementation of the boundary element method (BEM) and other applications.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用数学和力学:英文版》
  • 主管单位:交通部
  • 主办单位:上海大学
  • 主编:周哲玮
  • 地址:上海市宝山区上大路99号上海大学122信箱
  • 邮编:200444
  • 邮箱:amm@department.shu.edu.cn
  • 电话:021-66135219 66165601
  • 国际标准刊号:ISSN:0253-4827
  • 国内统一刊号:ISSN:31-1650/O1
  • 邮发代号:
  • 获奖情况:
  • 上海市优秀科技期刊一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论
  • 被引量:541