位置:成果数据库 > 期刊 > 期刊详情页
基于文摘的信息检索模型
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No.60736044 (国家自然科学基金); the Nail High-Tech Research and Development Plan of China under Grant Nos.863-317-01-04-99, 2006AA01Z150 (国家高技术研究发展计划(863))
中文摘要:

基于文摘的检索模型是基于一个假设,即出现在文摘中的词要比未出现在文摘中的词更能表达文章的主题,因此对检索贡献更大.提出了两个基于文摘的语言检索模型,一个是用文摘模型代替文档模型直接检索文件(SQL),另一个是用文摘模型平滑文档模型(SBDM).在TREC数据集上的实验表明,该模型能够提高检索的性能.其中,SBDM的性能一致接近或优于传统的标准文档查询相似模型.有两个方面的贡献,一方面提出了面向检索的文摘抽取方法并考察了这些文摘方法对检索性能的影响;另一方面提出了新的检索模型,即基于文摘的检索模型.

英文摘要:

Summary-Based retrieval is based on the hypothesis that terms in summary should be more important than other terms not in summary. Recent developments in the language modeling approach to information retrieval have motivated the study of this problem within this new retrieval framework. In the proposed research, two approaches to Summary-based retrieval, namely ranking documents directly (SQL) and smoothing documents with summaries (SBDM) are investigated. Results on TREC collections show that, with the proposed models, summary-based retrieval models can perform consistently across collections and significant improvements over document-based retrieval can be obtained. There are two main contributions in this paper. On the one hand, summarization method of retrieval-oriented is examed and effect of this method on information retrieval. On the other hand, the new retrieval model for summary-based information retrieval models is proposed.

同期刊论文项目
期刊论文 117 会议论文 76 专利 12 著作 3
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609