位置:成果数据库 > 期刊 > 期刊详情页
基于QPSO的数据聚类
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学信息工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金资助项目(60474030)
中文摘要:

在K-Means聚类、PSO聚类、K-Means和PSO混合聚类(KPSO)的基础上,研究了基于量子行为的微粒群优化算法(QPSO)的数据聚类方法,并提出利用K—Means聚类的结果重新初始化粒子群。结合QPSO的聚类算法,即KQPSO。介绍了如何利用上述算法找到用户指定的聚类个数的聚类中心。聚类过程都是根据数据之间的Euclidean(欧几里得)距离。K-Means算法、PSO算法和QPSO算法的不同在于聚类中心向量的“进化”上。最后使用三个数据集比较了上面提到的五种聚类方法的性能,结果显示基于QPSO算法的数据聚粪性能比一般PSO算法更好。

英文摘要:

This paper investigates Quantum-behaved Particle Swarm Optimization (QPSO) algorithm to cluster data based on the K-Means clustering, PSO clustering and KPSO clustering. After that we introduce using K-Means clustering to seed the initial swarm, combing with QPSO to cluster data, namely KQPSO and introduce how these algorithms can be used to find the centroids of a user specified number of clusters. All the process of clustering based on the Euclidean distance among data vectors. The differences between K-Means, PSO, QPSO is the evolution of the cluster-centroids. Finally, we compare the performance of the five clustering method on three data sets. The experiments result show QPSO clustering superiority.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049