应用扩展卡尔曼滤波(EKF)进行单频GPS精密动态单点定位时,只有当动力学模型和随机模型准确无误时,卡尔曼滤波才能提供系统状态向量的最优解。而实际上,卡尔曼滤波解会受到许多因素的影响。尝试利用支持向量机来辅助卡尔曼滤波,先选择具有全局意义的样本,把信息向量作为支持向量机的输入,输出是相应的滤波解差值。然后在动态定位中,在线利用训练好的支持向量机预测出当前历元的滤波解差值,实时地修正滤波解,从而提高定位精度。最后通过一个实际算例验证该算法的适用性。