位置:成果数据库 > 期刊 > 期刊详情页
基于小波包最优熵与 RVM的滚动轴承故障诊断方法
  • ISSN号:1000-3762
  • 期刊名称:《轴承》
  • 时间:0
  • 分类:TH133.33[机械工程—机械制造及自动化] TH17[机械工程—机械制造及自动化]
  • 作者机构:[1]内蒙古科技大学机械工程学院,内蒙古包头014010
  • 相关基金:国家自然科学基金项目(11302058);内蒙古自治区自然科学基金项目(2012MS0717)
中文摘要:

为解决滚动轴承振动信号信噪比低和故障分类准确性不高的问题,提出了小波包最优熵和相关向量机相结合的故障诊断方法。首先采用小波包对采集到的信号进行信噪分离,寻找分解后信号的最优小波包节点熵;然后提取最优节点能量作为训练样本,对相关向量机的多故障分类器进行训练,实现轴承的智能诊断。试验表明,该方法可简单有效地分离噪声,并具有良好的分类能力,可以很好地应用于轴承故障诊断。

英文摘要:

To solve the low signal -to -noise ratio of vibration signals for rolling bearings and the accuracy of fault clas-sification,a fault diagnosis method is presented,which combines wavelet packet optimal entropy and relevance vector machine(RVM).Firstly the acquisition signals are separated by wavelet packet,the optimal wavelet packet node entro-py of decomposed signal is searched.Then the energy of optimal node is extracted as training samples,the multi -fault classifier for RVMare trained,and the intelligent diagnosis for bearings is realized.The test shows that the method can simply and effectively separate noise,the classification ability is good,which can be good for fault diagnosis of bear-ings.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《轴承》
  • 北大核心期刊(2011版)
  • 主管单位:洛阳轴承研究所有限公司
  • 主办单位:洛阳轴承研究所有限公司
  • 主编:杜迎辉
  • 地址:河南省洛阳市吉林路
  • 邮编:471039
  • 邮箱:zcbj@sohu.com zcbjb@163.com
  • 电话:0379-64881567
  • 国际标准刊号:ISSN:1000-3762
  • 国内统一刊号:ISSN:41-1148/TH
  • 邮发代号:36-17
  • 获奖情况:
  • 荣获1996-1998年度机械工业优秀期刊二等奖,荣获1993-1994年度优秀科技期刊三等奖,荣获1992年全国优秀科技期刊评比三等奖
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:5181