位置:成果数据库 > 期刊 > 期刊详情页
动态功能脑网络模型的多任务融合Lasso方法
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院自动化研究所,北京100190, [2]中国中医科学院广安门医院,北京100053
  • 相关基金:国家自然科学基金项目(61305018,61432008,61472423,61532006)
中文摘要:

目的 传统的静息态功能性磁共振成像(fMRI)的功能脑网络(FBN)研究是基于在整个扫描过程中FBN固定不变的假设。但是,最近的研究表明FBN是动态变化的,而且其中蕴含着丰富的信息。本文提出一种多任务融合最小绝对值收缩和选择算子(Lasso)方法来构建静息态fMRI的动态FBN。 方法 提出的多任务融合Lasso方法可以在构建动态FBN时,保留网络的稀疏性及子序列的时间平滑性。具体来说,首先用滑动窗方法得到交叠的静息态fMRI子序列;然后用多任务融合Lasso方法联合地估计一个样本的所有子序列的功能连接从而构建动态FBN,用k均值聚类算法得到每类样本子序列的功能连接的聚类中心,并将所有类的聚类中心组成回归矩阵;最后根据回归矩阵求样本的回归系数,将其作为特征进行分类,验证多任务融合Lasso方法对动态FBN建模的有效性。 结果 采用公开的fMRI数据集来验证多任务融合Lasso模型构建动态FBN的分类效果。实验使用阿尔兹海默症神经影像学计划(ADNI)公开的fMRI数据集中的阿尔兹海默症患者、早期轻度认知功能障碍患者和健康被试3组数据,并用准确率、灵敏度和特异度来评估算法的分类性能。在3组二分类实验中,本文方法分别达到了92.31%、80.00%和84.00%的准确率。实验结果表明,与静态FBN模型和其他传统的动态FBN模型相比,本文方法能取得更好的分类效果。结论 本文提出的多任务融合Lasso构建动态FBN的方法,能有效地保留网络的稀疏性和子序列的时间平滑性,同时提高算法的分类效果,在一定程度上为脑部疾病的诊断提供帮助。多任务融合Lasso模型可以用于动态FBN的构建,挖掘功能连接的动态信息,同时整个算法可以用于基于fMRI数据的脑部疾病的分类研究中。

英文摘要:

Objective Functional brain network(FBN) has emerged as an effective tool in examining the functional abnormalities of the brain network in patients with brain disease. FBN is a mathematical representation of brain, in which the brain region is the node, and a functional connectivity between each pair of brain regions is an edge. The functional connectivity between the brain regions can reveal disease-related abnormalities in brain physiology. The FBN can be measured by several neuroimaging techniques. Functional magnetic resonance imaging(fMRI) is one of the most commonly used neuroimaging techniques. fMRI can detect the functional activities of the brain based on blood oxygen level dependent(BOLD) signals. Moreover, the resting-state fMRI can measure spontaneous fluctuations in BOLD signals, which is useful in exploring the abnormal brain activities in patients with brain disease. Conventional FBN studies of the resting-state fMRI assume the temporal stationarity of FBN across the duration of the scan. However, these static FBN studies ignore the existence of slightly different mental activities during the entire scan session. In addition, recent studies suggest that the FBN exhibit dynamic changes, which may contain powerful information. This paper presents a multi-task fused least absolute shrinkage and selection operation(Lasso) method to construct the dynamic FBN of a resting-state fMRI. Method The proposed multi-task fused Lasso can preserve the sparsity and temporal smoothness of the dynamic FBN. Specifically, we impose a sparsity constraint to the functional connectivity between the brain regions, which is based on some neurophysiological findings that a brain region only directly interacts with a few other brain regions in neurological processes. In addition, the adjacent fMRI sub-series are required to be similar, which is based on the temporal smoothness of the dynamic FBN. We first use the sliding window approach to generate a sequence of overlapping resting-state fMRI sub-series. Seco

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0