头皮脑电信号具有非平稳特性,相干等传统分析方法并不能很好地检测这些脑电时间序列间的依赖关系。广义同步中的似然同步算法对非平稳信号处理具有较好的效果,该文将它应用到实际脑电信号分析中。基于单向耦合Henon映射系统和实际脑电数据的仿真结果均表明,基于广义同步的似然同步方法适用测量非平稳信号间关系。针对健康被试静息态下,从闭眼到睁眼的过程中脑电信号间同步性的变化进行了研究,发现从闭眼到睁眼过程中,大脑的alpha波在几乎所有电极间的同步强度都显著地减弱,大脑的活动受到一定的抑制。上述结果也表明该方法在脑电数据分析中具有重要的意义,为其他的脑电研究提供一定的参考方法。
Due to the non-stationary characteristics of scalp electroencephalography (EEG), traditional analysis methods, such as coherent method, etc., can’t well detect statistical dependencies between time series recorded. synchronization likelihood (SL) based on generalized synchronization has been introduced to overcome some limitations of coherent estimations. And it is applied to analyze real EEG signals. Simulation results of Henon mapping system and actual EEG data demonstrate that the SL method is suitable for measuring the relationship between non-stationary signals. The changes of brain synchronization of healthy subjects are studied from eye closed to eye open during rest. Results show that the synchronization of alpha rhythm is significantly reduced in almost all electrodes, and the brain activity has a certain inhibition. All the results show that the method is of great significance in the study of EEG. It provides certain reference for future EEG research.