位置:成果数据库 > 期刊 > 期刊详情页
高维数据流子空间聚类发现及维护算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东南大学计算机科学与工程系,南京210096
  • 相关基金:国家自然科学基金项目(70371015);教育部高等学校博士学科点科研基金项目(20040286009)
中文摘要:

近年来由于数据流应用的大量涌现,基于数据流模型的数据挖掘算法研究已成为重要的应用前沿课题.提出一种基于Hoeffding界的高维数据流的子空间聚类发现及维护算法--SHStream.算法将数据流分段(分段长度由Hoeffding界确定),在数据分段上进行子空间聚类,通过迭代逐步得到满足聚类精度要求的聚类结果,同时针对数据流的动态性,算法对聚类结果进行调整和维护.算法可以有效地处理高雏数据流和对任意形状分布数据的聚类问题.基于真实数据集与仿真数据集的实验表明,算法具有良好的适用性和有效性.

英文摘要:

Data mining based on data stream has become a very hot research field in recent years. In this paper a novel discovering and maintenance algorithm of subspace clustering over high dimensional data streams is presented, which is based on Hoeffding bound and named SHStream. SHStream partitions data streams (the length of each segment is computed by Hoeffding bound), makes subspace clusters on the segments and discovers clusters step-by-step. Meanwhile, focusing on dynamic of data stream, SHStream adjusts and maintains the cluster results. SHStream can deal with high dimensional clustering problem effectively and discover clusters with arbitrary shape through the technology based on grids and density. The experimental results on real datasets and synthetic datasets demonstrate promising availabilities of the approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349