本文提出一种基于双矩形腔结构的表面等离子体类电磁诱导透明(PIT)系统,通过微流控系统来实现一种可操控的类电磁诱导透明效应。文中通过耦合模理论来对整个系统结构进行分析,并利用二维时域有限差分方法(FDTD)对该类电磁诱导透明效应系统进行数值模拟,模拟所得结果与理论分析相吻合。该系统可动态调节类电磁诱导透明效应的透射窗口中心波长及透射率、品质因子Q、慢光速度等,具有调节精确、调节范围大的优点。
A tunable plasmonic-induced transparency(PIT)system which consists of two identical rectangle cavities is proposed to realize the control of PIT by the optofluidics pump system.The result of the numerical according to the two-dimension finite-difference time-domain(FDTD)simulation conforms to the analysis of the coupled-mode theory.The transmission properties of the proposed structure such as the wavelength of the transmission peak,the transmission of the PIT window,the value of quality factor Q and the group index can get a high precision control.It has a wide range tunability of the transmission peak wavelength and the transmission of the PIT window.