目的:建立一种玛咖中腺苷的高效液相色谱(high performance liquid chromatography,HPLC)检测技术,并根据海拔、组织部位、干燥处理方法及表皮颜色差异对国产玛咖中腺苷含量进行分析。方法:用10%的甲醇溶液为提取溶剂提取玛咖中的腺苷,采用Waters Sunfire^TM C18(4.6 mm×250 mm,5μm)色谱柱,以甲醇—水(10∶90,V/V)为流动相,流速1.00 mL/min,紫外检测波长260 nm,柱温26℃为条件进行腺苷的HPLC含量测定,并用该方法对多个玛咖样本进行了腺苷含量分析;结果:该方法显示腺苷含量在2.81-90μg/m L范围内与峰面积呈良好的线性关系(R-2为0.999 4),精密度较高(相对标准偏差(relative standard deviation,RSD)为0.728 3%)、重复性较好(RSD为1.745%),样品溶液24 h内的稳定性好(RSD为1.069%),平均加样回收率为99.76%(RSD为0.48%)。根据不同玛咖样品检测结果发现,腺苷含量受玛咖颜色和海拔的影响较大,而且干燥处理方法和组织部位影响更大。结论:HPLC法适合玛咖中腺苷成分的含量测定,可用于玛咖原料的质量控制。
Objective: To establish a high performance liquid chromatography (HPLC) method for detecting the adenosinecontent of Lepidium meyenii (maca) and utilize it to detect and the adenosine contents of domestic maca grown at differentaltitudes, its different tissues, dried samples obtained using drying methods and maca varieties with different skin colors.Methods: A 10% aqueous methanol solution was used as the extraction solvent to extract the adenosine in maca. The HPLCanalysis was performed using a Waters SunfireTM C18 column (4.6 mm × 250 mm, 5 μm). The mobile phase was CH3OH-H2O(10:90, V/V) at a flow rate of 1.00 mL/min. The detection wavelength was 260 nm, and the column temperature was 26 ℃.Multiple samples were analyzed under these chromatographic conditions. Results: The method had good linearity in theconcentration range of 2.81–90 μg/mL (R2=0.999 4), high precision and good reproducibility with relative standard deviation(RSD) values of 0.728 3% and 1.745%, respectively. The sample solution was stable within 24 h (RSD = 1.069%), andthe average recovery of was 99.76% with a RSD value of 0.48% (n = 9). The analytical results of different maca samplesshowed that different altitudes and differently colored maca varieties had great influences on the content of adenosine whiledifferent drying methods and different tissues had more significant impacts. Conclusions: The HPLC method is suitable fordetecting the content of adenosine in maca for the quality control of maca materials.