位置:成果数据库 > 期刊 > 期刊详情页
TLR7激动剂的三维药效团模型研究(英文)
  • ISSN号:1003-1057
  • 期刊名称:《中国药学:英文版》
  • 时间:0
  • 分类:R916[医药卫生—药学]
  • 作者机构:[1]包头医学院第二附属医院,内蒙古包头014030, [2]北京大学医学部天然药物及仿生药物国家重点实验室,北京100191, [3]包头医学院第一附属医院,内蒙古包头014010
  • 相关基金:supported by the National Natural Science Foundation of China(Grant No.20902068); Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2011BS1201); Program for Young Talents of Science; Technology in Universities of Inner Mongolia Autonomous Region,China
中文摘要:

本研究选择了5个TLR7激动剂作为训练集,使用Discovery Studio软件包构建了TLR7激动剂的药效团模型。最终获得的最优药效团模型Hypo2由一个氢键受体、一个氢键给体和两个疏水中心组成,对训练集和测试集具有较好的预测能力。此外,将Hypo2作为提问结构搜索由79个不同活性的TLR7激动剂(0.2–5000nM)组成的化合物库,该模型能有效将数据库中高活性的TLR7激动剂识别为目标化合物。分子对接研究进一步验证了该药效团模型的合理性。本研究获得的TLR7激动剂药效团模型有助于发现新型TLR7激动剂。

英文摘要:

Toll-like receptor 7 (TLR7), the best known TLRs, has been demonstrated to be useful in fighting against infectious disease. In our study, three-dimensional (3D) pharmacophore models were constructed from a set of 5 TLR7 agonists. Among the 10 common-featured models generated by program Discovery Studio/HipHop, a hypothesis (Hypo2) including one hydrogen-bond donor (D), one hydrogen-bond acceptor (A), and two hydrophobic (H) features was considered to be important in evaluating the ligands with TLR7 agonistic activity. The obtained pharmacophore model was further validated using a set of test molecules and the Catalyst TLR7-agonist-subset database. Hypo2 has been shown to identify a range of highly potent TLR7 agonists. Finally, the obtained pharmacophore was further validated using docking studies. Taken together, this model can be utilized as a guide for future studies to design the structurally novel TLR7 agonists.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国药学:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:北京大学药学院
  • 主编:王夔
  • 地址:北京市学院路38号
  • 邮编:100083
  • 邮箱:zggy@mail.bjmu.edu.cn
  • 电话:010-82801713
  • 国际标准刊号:ISSN:1003-1057
  • 国内统一刊号:ISSN:11-2863/R
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:708