To proceed from sensation to movement, integration and transformation of information from different senses and reference frames are required. Several brain areas are involved in this transformation process, but previous neuroanatomical and neurophysiological studies have implicated the caudal area 7b as one particular component of this transformation system. In this study, we present the first quantitative report on the spatial coding properties of caudal area 7b. The results showed that neurons in this area had intermediate component characteristics in the transformation system; the area contained bimodal neurons, and neurons in this area encode spatial information using a hybrid reference frame. These results provide evidence that caudal area 7b may belong to the reference frame transformation system, thus contributing to our general understanding of the transformation system.
To proceed from sensation to movement, integration and transformation of information from different senses and reference frames are required. Several brain areas are involved in this transformation process, but previous neuroanatomical and neurophysiological studies have implicated the caudal area 7b as one particular component of this transformation system. In this study, we present the first quantitative report on the spatial coding properties of caudal area 7b. The results showed that neurons in this area had intermediate component characteristics in the transformation system; the area contained bimodal neurons, and neurons in this area encode spatial information using a hybrid reference frame. These results provide evidence that caudal area 7b may belong to the reference frame transformation system, thus contributing to our general understanding of the transformation system.