位置:成果数据库 > 期刊 > 期刊详情页
基于时序行为的协同过滤推荐算法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:2013
  • 页码:2721-2733
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国科学技术大学计算机科学与技术学院,安徽合肥230027
  • 相关基金:国家自然科学基金(61073110);国家科技支撑计划(2012BAH17803)
  • 相关项目:面向移动用户个性化服务的情境数据挖掘方法及应用研究
中文摘要:

协同过滤直接根据用户的行为记录去预测其可能喜欢的产品,是现今最为成功、应用最广泛的推荐方法.概率矩阵分解算法是一类重要的协同过滤方式.它通过学习低维的近似矩阵进行推荐,能够有效处理海量数据.然而,传统的概率矩阵分解方法往往忽略了用户(产品)之间的结构关系,影响推荐算法的效果.通过衡量用户(产品)之间的关系寻找相似的邻居用户(产品),可以更准确地识别用户的个人兴趣,从而有效提高协同过滤推荐精度.为此,提出一种对用户(产品)间的时序行为建模的方法.基于该方法,可以发现对当前用户(产品)影响最大的邻居集合.进一步地,将该邻居集合成功融合到基于概率矩阵分解的协同过滤推荐算法中.在两个真实数据集上的验证结果表明,所提出的SequentialMF推荐算法与传统的使用社交网络信息与标签信息的推荐算法相比,能够更有效地预测用户实际评分,提升推荐精度.

英文摘要:

Collaborative filtering, which makes personalized predictions by learning the historical behaviors of users, is widely used in recommender systems. The key to enhance the performance of collaborative filtering is to precisely learn the interests of the active users by exploiting the relationships among users and items. Though various works have targeted on this goal, few have noticed the sequential correlations among users and items. In this paper, a method is proposed to capture the sequential behaviors of users and items, which can help find the set of neighbors that are most influential to the given users (items). Furthermore, those influential neighbors are successfully applied into the recommendation process based on probabilistic matrix factorization. The extensive experiments on two real-world data sets demonstrate that the proposed SequentialMF algorithm can achieve more accurate rating predictions than the conventional methods using either social relations or tagging information.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609