位置:成果数据库 > 期刊 > 期刊详情页
城市快速路交通拥挤识别方法
  • ISSN号:1671-1637
  • 期刊名称:《交通运输工程学报》
  • 时间:0
  • 分类:U491[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1]吉林大学交通学院,吉林长春130025
  • 相关基金:国家自然科学基金重点项目(50338030);国家自然科学基金项目(50178072)
中文摘要:

为了从海量动态交通数据中快速识别路网中存在的交通拥挤,通过分析拥挤的特征模式和各种数据挖掘技术的特点后,设计了一种适用于城市快速路的交通拥挤自动识别方法。该方法将占有率、速度和流量三个基础交通流参数进行组合得到新的特征变量,运用优化的多层前馈神经网络模型对特征变量进行处理来判断是否有拥挤发生,通过分析模型输出结果的变化趋势区分常发性拥挤和偶发性拥挤。模拟数据和实测数据对比结果表明,该方法可以识别城市快速路上发生的交通拥挤,具有良好的实用性。

英文摘要:

In order to quickly identify traffic congestion from mass dynamic traffic information, traffic congestion pattern and the characteristics of various data mining technologies were analyzed, an autoidentifying method of urban expressway traffic congestion was designed. The flow, speed and occupancy of expressway were combined into several new eigenvectors, optimized multi-layer feedforward perceptron model was adopted to classify the eigenvectors during congestion and non-congestion, recurrent congestion and non-recurrent congestion could be distinguished by analyzing the variances of the model outputs, the method was tested with simulated data and actual data from an urban expressway. The result shows that the method has great practicability and can identify congestion states on urban expressway correctly. 2 tabs, ,5 figs, 11 refs.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《交通运输工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:长安大学
  • 主编:陈荫三
  • 地址:西安市南二环路中段
  • 邮编:710064
  • 邮箱:jygc@chd.edu.cn
  • 电话:029-82334388
  • 国际标准刊号:ISSN:1671-1637
  • 国内统一刊号:ISSN:61-1369/U
  • 邮发代号:52-195
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:13453