位置:成果数据库 > 期刊 > 期刊详情页
空间约束半监督高斯过程下的高光谱图像分类
  • ISSN号:1008-973X
  • 期刊名称:浙江大学学报(工学版)
  • 时间:2012.7
  • 页码:1295-1300
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]浙江大学计算机科学与技术学院,浙江杭州310029, [2]中国计量学院计算机系,浙江杭州310018
  • 相关基金:国家自然科学基金资助项目(60872071,61171151)
  • 相关项目:基于张量结构稀疏模型的高光谱成像信息处理
中文摘要:

针对高光谱遥感图像分类中带标记训练样本较少、导致分类正确率偏低的问题,提出用于高光谱图像分类的空间约束半监督高斯过程方法.由于高光谱图像的特征空间满足流形分布假设,大量未标记样本可以使数据空间变得更加稠密,从而有助于更加准确地刻画局部空间特性,提高分类的精度和普适性.通过对高斯过程模型中的核函数施加空间近邻约束,建立未标记样本与带标记样本之间的空间联系.该半监督高斯过程分类器不仅可以提升高光谱遥感图像的分类性能,而且构造简单,实现方便.实验结果表明,在仅有少量带标记的训练样本情况下,半监督高斯过程分类方法对高光谱图像有较高的分类精度和稳定性.

英文摘要:

A new classification method based on spatial semi-supervised Gaussian processes (SSGP) was proposed to address the problem of low hyperspectral imagery classification performance caused by a small number of labeled training samples. As the feature space of a hyperspectral imagery satisfies the assump- tion of manifold distribution, a lot of unlabeled samples will make the feature space denser so that the local spatial character can be exploited more precisely and the classification accuracy and generality can be im- proved. In SSGP, the constraint of spatial neighborhood was imposed into the kernel function of Gaussian process, so the spatial correlations of labeled and unlabeled samples can be embedded in the kernel func- tion. SSGP not only raises the classification performance, but also is easy to build and realize. Experimen- tal results show that SSGP method is very good at classification of hyperspectral images in terms of classi- fication accuracy and stability in the case of small size of labeled training samples.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《浙江大学学报:工学版》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:浙江大学
  • 主编:岑可法
  • 地址:杭州市浙大路38号
  • 邮编:310027
  • 邮箱:xbgkb@zju.edu.cn
  • 电话:0571-87952273
  • 国际标准刊号:ISSN:1008-973X
  • 国内统一刊号:ISSN:33-1245/T
  • 邮发代号:32-40
  • 获奖情况:
  • 2000年获浙江省科技期刊质量评比二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:21198