位置:成果数据库 > 期刊 > 期刊详情页
基于条件随机场的汉语动宾搭配自动识别
  • ISSN号:1003-0077
  • 期刊名称:《中文信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京师范大学文学院,江苏南京210097, [2]南京师范大学中北学院,江苏南京210046
  • 相关基金:国家社会科学基金资助项目(07BYY050)
中文摘要:

该文提出一种基于机器自动学习的统计模型条件随机场的方法用于汉语动宾搭配的自动识别。实验比较了两种分词与词性标记集下的识别效果,并增加了词性筛选准则作为优化处理。在特征选择上,考察了动词次范畴特征、上下文特征以及它们之间的组合特征的不同实验结果。综合实验结果,基于树库分词和词性标记的最好结果F值是87.40%,基于北京大学标准的分词和词性标记的最好结果F值是74.70%。实验表明,条件随机场模型在词语搭配实例自动识别方面有效可行。

英文摘要:

A new method to recognize the Chinese verb-object collocation is proposed on the basis of the conditional random fields (CRFs) model. The CRFs based model is examined with verb subcategorization features, context features, and features of their combination. The experiments are carried on two different Chinese word segmentation and part-of-speech tagging settings, with part-of-speech filtering rules to optimize the experiment. The results show that the best performance is 87.40% in F-score over Tsinghua Chinese Treebank, and 74.70% in F-score over the segmentation and part-of-speech tagging scheme of Peking University. Experimental results show that CRF model is effective in recognizing Chinese verb-object collocation automatically.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中文信息学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国中文信息学会 中国科学院软件研究所
  • 主编:孙茂松
  • 地址:北京海淀中关村南四街4号中科院软件所
  • 邮编:100190
  • 邮箱:jcip@iscas.ac.cn
  • 电话:010-62562916
  • 国际标准刊号:ISSN:1003-0077
  • 国内统一刊号:ISSN:11-2325/N
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9136