位置:成果数据库 > 期刊 > 期刊详情页
基于免疫克隆算法的多目标聚类方法
  • ISSN号:1002-0411
  • 期刊名称:《信息与控制》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]海军航空工程学院研究生管理大队,山东烟台264001, [2]海军航空工程学院控制工程系,山东烟台264001
  • 相关基金:国家自然科学基金资助项目(61004002).
中文摘要:

在分析k均值聚类和免疫进化聚类不足的基础上,提出一种基于Parzen密度估计的多目标免疫克隆聚类方法.该算法针对多目标免疫克隆算法中克隆规模难以确定的问题,根据密度聚类的思想,引入核密度估计,根据密度和进化代数确定各抗体的克隆规模,使用混沌变异增加抗体多样性.最后通过TOPSIS(technique for orderpreference by similarity to an ideal solution)方法进行抗体选择.人工以及UCI(universal chess interface)数据集上的仿真实验表明,该方法可以有效地提高算法速度,得到较好的聚类结果.

英文摘要:

A multi-objective immune clonal clustering method based on Parzen density estimation is proposed after analyzing disadvantages of k-means and immune evolutionary clustering. Aiming at the problem that clonal scale is hard to be determined in multi-objective immune clonal algorithm, a method based on density clustering is developed by using kernel density estimation. And the clonal scale of antibody is determined by density and generation. Chaotic mutation is introduced into this method to increase antibody diversity. Finally, TOPSIS (technique for order preference by similarity to an ideal solution) is used to choose antibodies. The simulation experiments on artificial and UCI (universal chess interface) data sets show that this algorithm has a higher speed and better clustering result.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《信息与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院沈阳自动化研究所
  • 主编:王天然
  • 地址:沈阳市南塔街114号
  • 邮编:110016
  • 邮箱:xk@sia.cn
  • 电话:024-23970049
  • 国际标准刊号:ISSN:1002-0411
  • 国内统一刊号:ISSN:21-1138/TP
  • 邮发代号:
  • 获奖情况:
  • 全国优秀期刊三等奖,中科院优秀期刊三等奖,辽宁省优秀期刊一等奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12960