考察非线性二阶边值问题-u″(t)+λu(t)=h(t)f(t,u(t))+ζ(t,u(t)),0〈t〈1,u′(0)=u′(1)=0,的正解,其中λ〉0.文中允许ζ(t,u)在t=0,t=1和u=0处奇异.利用锥上的GuoKrasnosel'skii不动点定理证明了n个正解的存在性,其中n是任意的正整数.
Letλ0.The positive solutions are considered for the nonlinear second-order Neumann boundary value problem -u"(t) +λu(t) = h(t)f(t,u(t))+ξ(t,u(t)),0t1,u'(0) =u'(1) = 0. Hereξ(t,u) is allowed to be singular at t = 0,t = 1 and u = 0.By applying the Guo-Krasnosel'skii fixed point theorem on cone,the existence of n positive solutions is proved,where n is an arbitrary positive integer.