位置:成果数据库 > 期刊 > 期刊详情页
优化SVM在锅炉负荷预测中的应用
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:TP301.1[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术] TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]贵州大学计算机科学与技术学院,贵阳550025, [2]贵州省光电子技术与应用重点实验室,贵阳550025
  • 相关基金:贵州省自然科学基金(黔科合字20072004);贵州省省长专项资金(黔省专合字(2007)14号)
中文摘要:

提出智能优化支持向量机算法来提高模型的预测能力和泛化能力。该算法针对支持向量机噪声敏感问题采用小波方法对数据集去噪;利用核主成分分析方法提取数据特征;采用量子粒子群算法优化支持向量机超参数。将该优化算法应用于锅炉负荷短期预测,实验结果表明,该优化算法预测精度较高,收敛速度较快,泛化性能优于其他预测方法,且工程实现容易。

英文摘要:

Intelligently optimal support vector machine (SVM) were introduced in electric utility boiler to improve short-term load forecasting accuracy and generalization ability. Wavelet transform is adopted to filter noise in training and testing data set. Kernel principle component analysis is used in feature selection. Then quantum-behaved particle swarm algorithm is chosen to determinate optimal hyper-parameter in SVM. This optimal algorithm has been tested on power plant and the results show that the prediction can get higher precision and convergence speed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314