位置:成果数据库 > 期刊 > 期刊详情页
基于多尺度上下文信息的图像目标分类算法
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安交通大学人工智能与机器人研究所,西安710049
  • 相关基金:国家973计划项目(2007CB311005); 国家自然科学基金重大科学研究计划项目(90920008)
中文摘要:

针对真实场景图像的目标分类问题,提出一种基于多尺度上下文信息的分类算法.首先运用一种软判决采样机制对图像进行局部信息采样,使场景内混合的各类信息以一种鲁棒的方式得到有效分离;然后,进一步基于软判决采样和统计特征表达机制,计算各空间尺度下的目标上下文统计特征;最后,通过逻辑回归分类算法有效地融合多尺度的上下文信息,并作出分类决策.实验表明,所提出的算法能更好地刻画真实场景下目标的特性,明显提高图像目标分类性能.

英文摘要:

To categorize objects in the real-world scene images,a method is proposed by exploiting multi-spatial extent context.Firstly,a soft decision-based sampling mechanism is utilized in the local image patch sampling process,by which,mixed information in the scene can be separated in an effective and robust way.Then,by using the soft decision-based sampling mechanism and the statistical representation methods,the statistical feature for each spatial extent context can be computed.Finally,a logistic regression classification method is adopted to integrate multiple spatial extent context information and make the final decisions.The experiments show that,the proposed method can better model the objects in the real world scenes,and thus apparently improves the object categorization performance.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961